
Ce problème aborde quelques aspects d’un dispositif de mesure du champ magnétique :
le magnétomètre à vanne de flux (fluxgate magnetometer en anglais). Aucune connaissance
particulière sur les magnétomètres n’est nécessaire.

Le magnétomètre à vanne de flux a été développé dans le but de mesurer précisément
les champs magnétiques statiques. Ce dispositif a été inventé par les physiciens allemands
Aschenbrenner et Goubau en 1936. La mesure du champ magnétique repose sur la saturation
du flux magnétique dans les matériaux magnétiques. Pendant la Seconde Guerre mondiale,
le magnétomètre a été amélioré pour permettre la détection aérienne des sous-marins.

Le magnétomètre à vanne de flux est un instrument toujours utilisé de nos jours aussi
bien dans l’exploration géologique que dans le domaine spatial.

Principe de fonctionnement
du magnétomètre à vanne de flux

A / Étude préliminaire : solénoïde droit infini

On considère un solénoïde infini d’axe (Oz) comportant n spires par unité de longueur
et parcouru par un courant d’intensité I (voir figure 1). On note (r, θ, z) les coordonnées
cylindriques d’un point M et (u⃗r, u⃗θ, u⃗z) les vecteurs unitaires de la base cylindrique.

Figure 1 – Solénoïde infiniment long.

A1. Énoncer le théorème d’Ampère.

On veut déterminer l’expression du champ magnétique B⃗(M) en un point M de l’espace.

A2. Montrer que le champ magnétique est uniforme à l’intérieur mais aussi à l’extérieur
du solénoïde.

A3. On admet que le champ magnétique créé à l’extérieur du solénoïde est nul, montrer
que, à l’intérieur du solénoïde, B⃗(M) = µ0nIu⃗z.

B / Bobine avec noyau en fer

On s’intéresse à l’influence d’un noyau ferromagnétique sur le comportement d’un
solénoïde. Le document 1 rappelle quelques propriétés des matériaux ferromagnétiques.

B1. Définir le champ coercitif et le champ rémanent d’un milieu ferromagnétique.
B2. Expliquer la différence entre un milieu ferromagnétique dur et un milieu ferroma-

gnétique doux.
À quel type de matériau ferromagnétique la modélisation associée à la figure 3 est-
elle adaptée ?
Comment obtenir expérimentalement la courbe (figure 2) du document 1 ?

2

Épreuve de Physique - Modélisation
Durée 3 h

TexteTexte

PSI — 2025

— PSI — DL 9 pour les vacances Décembre 2025



Tournez la page S.V.P.



On considère une bobine d’axe (Oz) formée de n spires par unité de longueur et par-
courue par un courant i. Les spires sont enroulées autour d’un matériau ferromagnétique
ayant la forme d’un barreau cylindrique (voir figure 4).
On fait les hypothèses suivantes :

• Le dispositif est supposé être suffisamment long pour que les effets de bord puissent
être négligés.

• Le champ magnétique créé par la bobine à l’intérieur du barreau est supposé uniforme
et parallèle à l’axe (Oz).

• Le champ magnétique à l’extérieur du barreau est supposé nul.

B3. Déterminer l’expression de l’excitation magnétique H⃗(M) en un point M à l’intérieur
du barreau. En déduire l’expression du champ magnétique dans le barreau. On
pourra utiliser les informations apportées par la figure 3.

Figure 4 – Solénoïde avec noyau ferromagnétique.

On utilise une bobine de mesure d’axe (Oz) formée de Ns spires de surface S enroulées
elles aussi autour du cylindre ferromagnétique de section S.
On supposera que le courant i(t) parcourant la bobine excitatrice est sinusoïdal de pulsation
ω et tel que i(t) = Im sin(ωt).

Figure 5 – Barreau ferromagnétique avec bobine excitatrice et bobine de mesure.

L’amplitude du courant Im est supposée suffisamment importante pour amener le ma-
tériau ferromagnétique à saturation. On notera e(t) la tension aux bornes de la bobine de
mesure.

B4. Déterminer l’expression du flux magnétique φ à travers une spire.
B5. Rappeler la loi de Lenz-Faraday. Quel phénomène physique traduit-elle ?
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B6. En déduire l’expression de la tension e(t) aux bornes de la bobine de mesure en fonc-
tion de Ns, S et B. Discuter de la valeur de e(t) selon que le noyau ferromagnétique
est saturé ou non.

C / Influence du champ magnétique extérieur

On utilise un courant sinusoïdal i(t) pour alimenter la bobine d’excitation. Cette der-
nière est toujours formée de n spires par unité de longueur enroulées autour d’un barreau
cylindrique ferromagnétique. Le dispositif (figure 5) est utilisé en l’absence de champ ma-
gnétique extérieur. On donne sur la figure 6.a l’évolution du champ d’excitation magnétique
H et du champ magnétique B dans la bobine en fonction du temps.

Figure 6 – Simulation numérique avec courant d’entrée sinusoïdal. Le champ magnétique
extérieur est nul. Le spectre de la fonction dB

dt correspond à la figure 6.c. Le terme u.a.
signifie unités arbitraires.

C1. Comment se manifeste sur la figure 6.a la saturation du barreau ferromagnétique
du magnétomètre ?

C2. D’après le graphique 6.c, quelle est la fréquence du fondamental de la tension e(t) aux
bornes de la bobine de mesure ? Quelle constatation faire au sujet des harmoniques ?

Le dispositif (figure 5) est maintenant utilisé en présence d’un champ magnétique ex-
térieur B⃗0 dirigé suivant l’axe (Oz) du noyau cylindrique ferromagnétique. On donne, sur
la figure 7.a, l’évolution du champ d’excitation magnétique H et du champ magnétique B
dans la bobine au cours du temps.
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C3. Quelle est l’expression de l’excitation magnétique H⃗0 associée à la présence du
champ extérieur B⃗0 = B0u⃗z ? En déduire l’expression de l’excitation totale H⃗ à
l’intérieur du cylindre ferromagnétique en fonction de B0, n, µ0 et i(t).

C4. D’après la figure 7.a, quelle est l’influence sur B(t) de la présence d’un champ
magnétique extérieur constant aligné avec le barreau ferromagnétique du magné-
tomètre ? On expliquera en particulier les différences entre les courbes B(t) des
figures 6.a et 7.a.

C5. Quelles sont les composantes présentes dans le spectre de dB
dt ? Comment expliquer

la différence avec le spectre obtenu en l’absence de champ extérieur ?

Figure 7 – Simulation numérique avec courant d’entrée sinusoïdal. Un champ magnétique
extérieur est présent et aligné dans la même direction que celle du magnétomètre. Le spectre
de la fonction dB

dt correspond à la figure 7.c.

On propose une modélisation simple permettant de déterminer l’expression de la tension
e(t) aux bornes de la bobine de mesure. La courbe caractéristique B = f(H) donnée figure
3 est désormais supposée être représentée par un polynôme d’ordre 3 :

B = f(H) = aH − bH3 (1)

où l’excitation magnétique H comprend à la fois une composante continue H0 associée au
champ magnétique extérieur à mesurer et une composante interne H1 produite par le courant
de la bobine d’excitation. On a ainsi H = H0 + H1.
Les coefficients a et b sont supposés constants et positifs. En alimentant la bobine excitatrice
avec un courant sinusoïdal, l’excitation magnétique H s’écrit sous la forme :

H(t) = H0 + Hm sin(ωt) (2)
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C6. Montrer que dB
dt s’écrit sous la forme :

dB

dt
= K1 cos(ωt) + K2 sin(2ωt) + K3 cos(3ωt) (3)

avec
• K2 = −3bH0H2

mω
• K1 et K3 étant notamment des fonctions impaires de Hm.

On donnera les expressions de K1 et K3.
On pourra utiliser le formulaire de trigonométrie fourni en annexe.

C7. Quel intérêt présente l’harmonique de rang 2 par rapport aux autres harmoniques
pour déterminer la valeur du champ magnétique extérieur ? Comment mesurer
l’amplitude de l’harmonique 2 ?

Traitement du signal
En pratique le signal utilisé pour alimenter la bobine excitatrice possède une fréquence

fe typiquement comprise entre 1 kHz et 10 kHz. Pour assurer un bon rapport signal sur
bruit, le noyau ferromagnétique atteint 10 à 100 fois son seuil de saturation.
L’étude effectuée dans la partie C montre que l’amplitude de la seconde harmonique du
signal de la bobine de lecture est proportionnelle à l’amplitude de la composante du champ
magnétique dans la direction du magnétomètre.

Figure 8 – Schéma bloc du circuit de contrôle du magnétomètre.

La linéarité n’est cependant observée que si le champ à mesurer est suffisamment faible.
Pour étendre la plage de fonctionnement linéaire du détecteur, on utilise une bobine de com-
pensation. Cette bobine a pour but de générer un champ magnétique compensant le champ
magnétique extérieur. En pratique, c’est la bobine de mesure elle-même qui est utilisée
comme bobine de compensation. La valeur du courant réalisant la compensation est déter-
minée via une boucle de rétroaction et permet la détermination de l’intensité du champ
magnétique extérieur.
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D / Étude d’un filtre passe-bande

On étudie les propriétés du filtre ci-dessous. On se place en régime sinusoïdal.

D1. Pour quelle raison la chaîne de mesure de la figure 8 comporte-t-elle un filtre
passe-bande ?

Figure 9 – Filtre passe-bande.

D2. Montrer que la fonction de transfert du filtre s’écrit :

H = A

1 + jQ
(

ω
ω0

− ω0
ω

) (4)

Déterminer les expressions de ω0, A et Q en fonction de R, L et C.
D3. Montrer que le gain est maximal pour une valeur particulière de la pulsation ω.

Donner l’expression du gain maximal.
D4. Donner l’allure du gain H = |H| en fonction de la pulsation ω.
D5. Qu’appelle-t-on bande passante à -3 dB du filtre ? Rappeler et commenter l’expres-

sion de la largueur de la bande passante ∆ω en fonction de Q et ω0.
D6. Compte-tenu des caractéristiques du signal e(t) arrivant sur la chaîne de mesure de

la figure 8, comment choisir la valeur de la pulsation ω0 du filtre ?
E / Détection synchrone et circuit intégrateur

La détection directe du signal n’est pas toujours aisée. Le signal peut être de faible
intensité et noyé dans du bruit. La détection synchrone permet alors d’extraire le signal
recherché. On décrit ici le principe de fonctionnement de la détection synchrone.
Le signal s(t) en sortie du filtre passe-bande est composé d’une part du signal physique
recherché sp(t) et d’autre part de composantes présentes non associées au signal physique,
que l’on appelle de façon générique le bruit. En notant b(t) le bruit présent, on peut écrire :
s(t) = sp(t) + b(t).
La fréquence du signal physique utile sp(t) est connue et égale à 2fe.
On suppose que sp(t) et b(t) ont une moyenne nulle : ⟨sp(t)⟩ = ⟨b(t)⟩ = 0, la moyenne étant
effectuée sur une durée Te = 1

fe
= 2π

ωe
.

Un dispositif non détaillé ici permet de générer, à partir du signal alimentant la bobine
excitatrice, un signal sinusoïdal de référence sref (t) de même fréquence que sp(t), et a priori
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déphasé de ϕ par rapport à celui-ci. Le bruit étant indépendant du signal physique recherché,
on a la propriété suivante : ⟨sref (t)b(t)⟩ = 0.
On pose : sp(t) = A cos(2 ωe t + ϕ) et sref (t) = B cos(2 ωe t). Le montage ci-dessous
permet de mettre en œuvre le principe de la détection synchrone. On effectue dans un
premier temps le produit du signal sref (t) avec le signal s(t).
On admet qu’en sortie du multiplieur le signal s’écrit : s2(t) = Ks(t)sref (t) où K est une
constante.

Figure 10 – Principe de la démodulation synchrone.

E1. Déterminer l’expression du signal de sortie s2(t) du multiplieur en fonction de b(t),
K, A, B, ωe et ϕ. Montrer que le signal s2(t) possède une composante continue
1
2KAB cos(ϕ).

On souhaite réaliser le filtre passe-bas passif mentionné sur la figure 10 et permet-
tant d’isoler la composante continue du signal s2(t) en utilisant un conducteur ohmique de
résistance R et un condensateur de capacité C.

E2. Représenter le montage correspondant. Donner l’expression de la fonction de
transfert en fonction de la pulsation de coupure du filtre. On donnera l’expression
de la pulsation de coupure ωc en fonction de R et C.

E3. Indiquer comment choisir la valeur de la pulsation ωc de ce filtre passe-bas.
Proposer un couple de valeurs pour R et C satisfaisant la contrainte précédente
avec fe = 1, 0 kHz.

On s’intéresse au rôle du circuit intégrateur dans la chaîne de traitement et à un
exemple de réalisation de celui-ci.

E4. Expliquer en quoi l’utilisation d’un circuit intégrateur permet d’effectuer la com-
pensation mentionnée dans le préambule de la page 7.

E5. Rappeler les caractéristiques d’un amplificateur linéaire intégré (ALI) idéal. Re-
présenter l’évolution de la tension de sortie en fonction de la tension différentielle
d’entrée et identifier sur le graphique les différents régimes de fonctionnement de
l’ALI.

E6. Quelle grandeur sur la figure 8 permet de déterminer la valeur du champ magnétique
extérieur (constant) dans lequel est plongé le magnétomètre ?

Pour réaliser un circuit intégrateur, on propose, sur la figure 11, un montage utilisant
un ALI. Ce dernier sera supposé idéal, de gain infini et fonctionner en régime linéaire.
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E7. Indiquer comment réaliser le montage de la figure 11. On précisera en particulier
les appareils à utiliser et comment les connecter pour, notamment, visualiser les
tensions périodiques e(t) et s(t).

E8. Déterminer l’équation différentielle reliant les tensions e(t) et s(t). On fera intervenir
l’expression de la constante de temps τ du circuit.

Figure 11 – Circuit intégrateur.

Exemple de magnétomètre

Plusieurs configurations géométriques du noyau ferromagnétique sont possibles pour
réaliser un magnétomètre à vanne de flux. Dans tous les cas, on utilise un bobinage d’exci-
tation et un bobinage de mesure. Une configuration couramment utilisée est celle utilisant
un noyau de forme torique.

F / Étude d’un magnétomètre avec noyau torique

On étudie les propriétés d’une bobine torique avec noyau ferromagnétique. Une bobine
est constituée par un fil conducteur enroulé en spires jointives sur un tore (le noyau ferro-
magnétique) à section circulaire de rayon a et de rayon moyen R (voir figure 12). On note
N1 le nombre de spires bobinées en série et parcourues par un courant électrique d’intensité
i(t).

Le matériau utilisé est caractérisé par la courbe de la figure 3. Le courant i(t) parcou-
rant la bobine excitatrice est sinusoïdal de pulsation ω : i(t) = Im sin(ωt). On appelle H⃗1
l’excitation magnétique créée par le courant i(t) dans la bobine torique.

F1. Quelles sont les propriétés de symétrie de cette distribution de courant ? En déduire
l’allure des lignes de champ et l’orientation du vecteur H⃗1.

F2. Montrer que pour un point M situé à l’intérieur de la bobine torique, à une distance
r de l’axe (Oz) de la bobine, l’expression du vecteur H⃗1(M) s’écrit sous la forme :
H⃗1(M, t) = H1(M, t)u⃗(M) avec H1(M, t) = Hm sin(ωt).
On précisera les expressions de Hm et u⃗(M).
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Vue de dessus. Vue en coupe.

Figure 12 – Bobine torique.

F3. Pour amener le cœur ferromagnétique à saturation, il faut typiquement (selon
la nature du matériau) une excitation magnétique minimale Hmin de l’ordre
de 103A · m−1. Déterminer l’amplitude minimale du courant pour que le cœur
ferromagnétique soit entièrement à saturation. On prendra pour l’application
numérique les valeurs suivantes : R = 10 cm, a = 2,0 cm et N1 = 1000 spires.

On considère toujours la bobine torique avec noyau ferromagnétique. Elle est maintenant
soumise à une excitation magnétique extérieure H⃗0 uniforme et dirigée suivant (Oy) (voir
figure 13).

Figure 13 – Bobine torique avec noyau.
Figure 14 – Coordonnées d’un point M situé
dans le noyau torique.
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F4. Montrer que, en un point M du tore repéré par ses coordonnées cylindriques (r, θ, z)
(voir figure 14), la composante du champ magnétique suivant la direction (Oy),
s’écrit :

By(M, t) = f(H1(M, t) · cos θ + H0)
où f est donnée à nouveau par l’équation (1) (page 6) et modélise le comportement
du noyau ferromagnétique et H1(M, t) est la valeur de l’intensité de l’excitation
magnétique définie à la question F2.

Pour déterminer l’excitation magnétique extérieure H⃗0 = H0 u⃗y, un second bobinage, la
bobine de mesure, est disposé autour du tore comme indiqué dans la figure 15. La bobine de
mesure recouvre le solénoïde torique. On précise que l’enroulement de la bobine de mesure
est régulier le long de la direction (Oy). On notera N2 le nombre de spires de la bobine de
mesure.

Figure 15 – Magnétomètre avec noyau torique.

On souhaite déterminer l’expression de la tension apparaissant aux bornes de la bobine
de mesure. On cherche dans un premier temps à déterminer la tension induite dans la spire
située à l’abscisse y.
Les propriétés liées à la symétrie du problème permettent d’écrire la tension apparaissant
aux bornes d’une spire d’abscisse y de la bobine de mesure sous la forme :

espire(y, t) = −
∫∫

S(x>0,y)

(
∂By(−x, y)

∂t
+ ∂By(x, y)

∂t

)
dS (5)

avec By(±x, y) = f(±H1(M, t) · cos θ + H0) et S(x > 0, y) la section du noyau torique
parallèle au plan (Oxz), située à l’abscisse y et pour laquelle x >0.
La fonction f est toujours donnée par l’équation (1).

F5. Indiquer en reproduisant le schéma de la figure 14 où se situe la surface S(x > 0, y)
pour le cas 0 < y < R − a et le cas R − a < y < R + a.
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F6. Montrer à l’aide du résultat de la question C6 que la force électromotrice espire(y, t)
qui apparaît aux bornes de la spire d’abscisse y de la bobine de mesure a pour
expression :

espire(y, t) = 6bH0ω sin(2ωt)
∫∫

S(y,x>0)

H2
m(x, y, z) cos2(θ(x, y))dxdz (6)

où S(x > 0, y) est la section du tore définie précédemment.
F7. Déterminer l’expression du nombre de spires dN de la bobine situées entre y et

y + dy. À l’aide de la question F6, en déduire l’expression de la force électromotrice
de induite aux bornes de ces dN spires.

F8. Montrer que la force électromotrice e(t) qui apparaît aux bornes de la bobine de
mesure s’écrit :

e(t) = 3 α b
N2N2

1 I2
m

8π2
H0

R + a
ω sin(2ωt) (7)

où α =
∫∫∫

V

cos2 θ

r2 dV et V est le volume du noyau torique.

F9. En l’absence d’excitation magnétique extérieure, que vaut la tension induite aux
bornes du bobinage de mesure ? Quel avantage présente le magnétomètre à noyau
torique par rapport au magnétomètre à barreau rectiligne ?

F10. Indiquer comment mesurer simultanément l’intensité du champ magnétique dans
deux directions orthogonales avec un seul magnétomètre à noyau torique.

Étude numérique

On se propose d’étudier quelques aspects associés au traitement numérique du signal
d’un magnétomètre à vanne de flux.
On utilisera uniquement les fonctions données en annexe. Les bibliothèques correspondantes
seront supposées avoir été préalablement importées sous Python. L’usage d’autres fonctions
sur les listes telles que max(liste), min(liste) ou encore sum(liste) est interdit. Ces
fonctions devront être programmées explicitement si nécessaire.

G / Quelques aspects algorithmiques associés au traitement des données

Dans l’étude du magnétomètre torique effectuée dans la partie F, on est amené à évaluer
l’intégrale α =

∫∫∫

V

cos2 θ

r2 dV (question F8). On cherche à déterminer numériquement la

valeur de α.

G1. Écrire une fonction f(x,y,z) recevant pour paramètres les coordonnées x, y et z
d’un point M et qui renvoie la valeur cos2 θ

r2 .
On pourra noter que cos2 θ

r2 = x2

(x2+y2)2 .
G2. Écrire une fonction Choisir(a,b) qui renvoie une valeur choisie aléatoirement de

manière uniforme entre les bornes a et b passées en argument.
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On propose de déterminer la valeur de α =
∫∫∫

V

f(M)dV par une méthode numérique

appelée intégration Monte Carlo. L’intégrale s’effectue sur le tore de volume V correspondant
au noyau de la bobine ferromagnétique étudiée dans la partie F.
L’intégration Monte Carlo est basée sur le fait que l’intégrale de f(M) sur le volume V peut
être approximée par α ≃ V ⟨f⟩ avec ⟨f⟩ = 1

N

N∑
i=1

f(Mi) où les N points Mi sont choisis
aléatoirement et uniformément à l’intérieur du volume V.
L’écart typique entre la valeur exacte de l’intégrale

∫∫∫

V

f(M)dV et V ⟨f⟩ est donné par

V
√

⟨f2⟩−⟨f⟩2

N avec ⟨f2⟩ = 1
N

N∑
i=1

f(Mi)2.

Quand le nombre N est suffisamment grand, V ⟨f⟩ tend vers
∫∫∫

V

f(M)dV .

On donne un algorithme permettant de déterminer l’intégrale α effectuée sur le volume V,
ainsi que l’erreur relative sur α. On suppose que le nombre de points N est une variable
globale préalablement fixée.

• Initialiser les variables I et I2 à 0.
• Effectuer les opérations suivantes jusqu’à obtenir N points dans le tore :

— Choisir un point M au hasard dans le parallélépipède rectangle (de volume mini-
mal) contenant le tore.

— Si le point M est dans le tore, on détermine f(M). On ajoute cette valeur à I, et
la valeur de f(M)2 à la variable I2.

• Renvoyer l’estimation de la valeur de α et l’erreur relative associée.

On considérera le parallélépipède rectangle défini par :
−(R + a) ≤ x ≤ R + a, −(R + a) ≤ y ≤ R + a et −a ≤ z ≤ a.

On pourra noter qu’un point M de coordonnées cartésiennes (x,y,z) appartient au tore si(√
x2 + y2 − R

)2
+ z2 ≤ a2.

G3. Écrire une fonction Est_dans_tore(x,y,z) recevant pour paramètres les coordon-
nées x, y et z et qui renvoie True si le point M est dans le tore et False sinon. Les
rayons R et a caractérisant le tore seront supposés être des variables globales.

G4. Écrire une fonction Choix_point() qui renvoie les coordonnées x, y et z d’un point
choisi au hasard dans le parallélépipède rectangle de volume minimal contenant le
tore.

G5. Implémenter le calcul de l’intégrale α et de l’erreur relative associée par la méthode
Monte Carlo décrite ci-dessus.

Les différentes opérations décrites dans les parties D à E du problème peuvent être
implémentées de façon numérique. On considère que le signal us(t) a été numérisé avec une
période d’échantillonnage Te. Les valeurs numériques associées au signal sont disponibles
dans une liste u de taille N. La valeur us(kTe) du signal à l’instant kTe correspond au kième
élément de la liste u.

14



On propose de déterminer la valeur de α =
∫∫∫

V

f(M)dV par une méthode numérique

appelée intégration Monte Carlo. L’intégrale s’effectue sur le tore de volume V correspondant
au noyau de la bobine ferromagnétique étudiée dans la partie F.
L’intégration Monte Carlo est basée sur le fait que l’intégrale de f(M) sur le volume V peut
être approximée par α ≃ V ⟨f⟩ avec ⟨f⟩ = 1

N

N∑
i=1

f(Mi) où les N points Mi sont choisis
aléatoirement et uniformément à l’intérieur du volume V.
L’écart typique entre la valeur exacte de l’intégrale

∫∫∫

V

f(M)dV et V ⟨f⟩ est donné par

V
√

⟨f2⟩−⟨f⟩2

N avec ⟨f2⟩ = 1
N

N∑
i=1

f(Mi)2.

Quand le nombre N est suffisamment grand, V ⟨f⟩ tend vers
∫∫∫

V

f(M)dV .

On donne un algorithme permettant de déterminer l’intégrale α effectuée sur le volume V,
ainsi que l’erreur relative sur α. On suppose que le nombre de points N est une variable
globale préalablement fixée.

• Initialiser les variables I et I2 à 0.
• Effectuer les opérations suivantes jusqu’à obtenir N points dans le tore :

— Choisir un point M au hasard dans le parallélépipède rectangle (de volume mini-
mal) contenant le tore.

— Si le point M est dans le tore, on détermine f(M). On ajoute cette valeur à I, et
la valeur de f(M)2 à la variable I2.

• Renvoyer l’estimation de la valeur de α et l’erreur relative associée.

On considérera le parallélépipède rectangle défini par :
−(R + a) ≤ x ≤ R + a, −(R + a) ≤ y ≤ R + a et −a ≤ z ≤ a.

On pourra noter qu’un point M de coordonnées cartésiennes (x,y,z) appartient au tore si(√
x2 + y2 − R

)2
+ z2 ≤ a2.

G3. Écrire une fonction Est_dans_tore(x,y,z) recevant pour paramètres les coordon-
nées x, y et z et qui renvoie True si le point M est dans le tore et False sinon. Les
rayons R et a caractérisant le tore seront supposés être des variables globales.

G4. Écrire une fonction Choix_point() qui renvoie les coordonnées x, y et z d’un point
choisi au hasard dans le parallélépipède rectangle de volume minimal contenant le
tore.

G5. Implémenter le calcul de l’intégrale α et de l’erreur relative associée par la méthode
Monte Carlo décrite ci-dessus.

Les différentes opérations décrites dans les parties D à E du problème peuvent être
implémentées de façon numérique. On considère que le signal us(t) a été numérisé avec une
période d’échantillonnage Te. Les valeurs numériques associées au signal sont disponibles
dans une liste u de taille N. La valeur us(kTe) du signal à l’instant kTe correspond au kième
élément de la liste u.

14

L’opération de multiplication apparaissant dans la chaîne de traitement de données (figure
8) peut être implémentée numériquement.

G6. Écrire une fonction Produit(sx,sy) qui renvoie le produit des deux listes sx et sy
passées en argument. Les deux listes seront supposées être de même longueur.

On note s la liste obtenue. On a vu dans la partie E que l’information utile correspond
à la moyenne de s.

G7. Écrire une fonction Moyenne(L) qui renvoie la valeur moyenne des éléments de la
liste L passée en argument.

La moyenne m de la liste s est liée à l’intensité du champ magnétique à mesurer. Elle
dépend aussi du déphasage entre les signaux sx et sy. La valeur de m est maximale quand
le déphasage est nul. Il est donc intéressant de chercher à annuler le déphasage entre les
signaux sx et sy avant de procéder à l’étape de multiplication.
Pour cela, on commence par rechercher le décalage temporel entre les deux signaux sx et sy
de même période. Ce décalage peut être déterminé à l’aide de la fonction d’inter-corrélation
C(n) définie numériquement par :

C(n) =
M+n∑

k=n

sxk · syk−n (8)

où M définit la taille de la fenêtre pour effectuer le calcul. L’idée est de rechercher le retard
(ou translation nTe) qui permet de maximiser la ressemblance entre les signaux sx et sy.
On cherche alors la plus petite valeur de n pour laquelle C(n) est maximale. La fonction
C(n) est elle-même définie pour n compris entre 0 et N-1-M où N est le nombre d’éléments
dans la liste sx (ou sy).

On souhaite déterminer la fonction d’inter-corrélation des signaux sx et sy supposés de
même longueur N = 2ℓ et de moyenne nulle.

G8. Proposer une fonction Valeur_max(L) qui renvoie la valeur maximale de la liste L
passée en argument.

G9. On souhaite que les listes sx et sy soient de moyenne nulle, ce qui n’est pas a
priori le cas. Écrire une fonction Moyenne_nulle(L) qui modifie la liste L passée en
argument de façon à ce que sa moyenne soit nulle.

G10. On choisit de calculer la fonction d’inter-corrélation pour M = ℓ. Écrire la
fonction Intercorr(sx,sy) qui renvoie la liste contenant les valeurs de la fonction
d’inter-corrélation C(n) pour n compris entre 0 et ℓ − 1.

G11. Quelle est la longueur de la liste renvoyée par la fonction Intercorr(sx,sy) ?
Quelle est la complexité temporelle associée à l’exécution de cette fonction dans les
conditions précisées ici ?

15 Tournez la page S.V.P.
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DONNÉES
• Volume d’un tore de rayon R et de section circulaire de rayon a : V = 2π2Ra2

Constantes physiques :
• Perméabilité du vide : µ0 = 4π · 10−7 H · m−1

• Permittivité du vide : ϵ0 = 8, 854 · 10−12 F · m−1

Formulaire mathématique :
• sin2(x) = 1

2 − 1
2 cos(2x)

• sin3(x) = −1
4 sin(3x) + 3

4 sin(x)
• cos a · cos b = 1

2 (cos(a + b) + cos(a − b))

ANNEXE

Fonctions et constantes autorisées - Python
len(L) renvoie le nombre d’éléments de la liste L.
L = [] création d’une liste vide.
L = [x]*n création d’une liste de n éléments ayant

tous la valeur contenue dans la variable x.
L = [x for i in range(n)] même opération que précédemment

(alternative avec une compréhension de liste).
L.append(elt) ajoute l’élément elt à la liste L.

La méthode append ne renvoie aucune valeur.
cos(x) renvoie la valeur du cosinus de x radians.
sin(x) renvoie la valeur du sinus de x radians.
tan(x) renvoie la valeur de la tangente de x radians.
sqrt(x) renvoie la racine carrée de x.
pi constante dont la valeur est π = 3.141592... à

la précision disponible.
random() renvoie un nombre pseudo-aléatoire compris

entre 0 et 1 avec une densité de probabilité uniforme.

Fin de l’épreuve
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 NE RIEN ÉCRIRE DANS CE CADRE

A / Étude préliminaire : solénoïde droit infini

A1. Énoncer le théorème d’Ampère.

A2. Montrer que le champ magnétique est uniforme à l’intérieur mais aussi à l’extérieur
du solénoïde.

2

Document réponse



 NE RIEN ÉCRIRE DANS CE CADRE

A3. On admet que le champ magnétique créé à l’extérieur du solénoïde est nul, montrer
que, à l’intérieur du solénoïde, B⃗(M) = µ0nIu⃗z.

B / Bobine avec noyau en fer

B1. Définir le champ coercitif et le champ rémanent d’un milieu ferromagnétique.

B2. Expliquer la différence entre un milieu ferromagnétique dur et un milieu ferroma-
gnétique doux.
À quel type de matériau ferromagnétique la modélisation associée à la figure 3 est-
elle adaptée ?
Comment obtenir expérimentalement la courbe (figure 2) du document 1 ?

3 Tournez la page S.V.P.
Tournez la page S.V.P.



 NE RIEN ÉCRIRE DANS CE CADRE

B3. Déterminer l’expression de l’excitation magnétique H⃗(M) en un point M à l’intérieur
du barreau. En déduire l’expression du champ magnétique dans le barreau. On
pourra utiliser les informations apportées par la figure 3.

B4. Déterminer l’expression du flux magnétique φ à travers une spire.

4



 NE RIEN ÉCRIRE DANS CE CADRE

B5. Rappeler la loi de Lenz-Faraday. Quel phénomène physique traduit-elle ?

B6. En déduire l’expression de la tension e(t) aux bornes de la bobine de mesure en fonc-
tion de Ns, S et B. Discuter de la valeur de e(t) selon que le noyau ferromagnétique
est saturé ou non.

C / Influence du champ magnétique extérieur

C1. Comment se manifeste sur la figure 6.a la saturation du barreau ferromagnétique
du magnétomètre ?

5 Tournez la page S.V.P.

G10. On choisit de calculer la fonction d’inter-corrélation pour M = ℓ. Écrire la
fonction Intercorr(sx,sy) qui renvoie la liste contenant les valeurs de la fonction
d’inter-corrélation C(n) pour n compris entre 0 et ℓ − 1.

G11. Quelle est la longueur de la liste renvoyée par la fonction Intercorr(sx,sy) ?
Quelle est la complexité temporelle associée à l’exécution de cette fonction dans les
conditions précisées ici ?

24
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 NE RIEN ÉCRIRE DANS CE CADRE

C2. D’après le graphique 6.c, quelle est la fréquence du fondamental de la tension e(t) aux
bornes de la bobine de mesure ? Quelle constatation faire au sujet des harmoniques ?

C3. Quelle est l’expression de l’excitation magnétique H⃗0 associée à la présence du
champ extérieur B⃗0 = B0u⃗z ? En déduire l’expression de l’excitation totale H⃗ à
l’intérieur du cylindre ferromagnétique en fonction de B0, n, µ0 et i(t).

C4. D’après la figure 7.a, quelle est l’influence sur B(t) de la présence d’un champ
magnétique extérieur constant aligné avec le barreau ferromagnétique du magné-
tomètre ? On expliquera en particulier les différences entre les courbes B(t) des
figures 6.a et 7.a.

6

G8. Proposer une fonction Valeur_max(L) qui renvoie la valeur maximale de la liste L
passée en argument.

G9. On souhaite que les listes sx et sy soient de moyenne nulle, ce qui n’est pas a
priori le cas. Écrire une fonction Moyenne_nulle(L) qui modifie la liste L passée en
argument de façon à ce que sa moyenne soit nulle.

23 Tournez la page S.V.P.
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 NE RIEN ÉCRIRE DANS CE CADRE

C5. Quelles sont les composantes présentes dans le spectre de dB
dt ? Comment expliquer

la différence avec le spectre obtenu en l’absence de champ extérieur ?

C6. Montrer que dB
dt s’écrit sous la forme :

dB

dt
= K1 cos(ωt) + K2 sin(2ωt) + K3 cos(3ωt) (3)

avec
• K2 = −3bH0H2

mω
• K1 et K3 étant notamment des fonctions impaires de Hm.

On donnera les expressions de K1 et K3.
On pourra utiliser le formulaire de trigonométrie fourni en annexe.

7 Tournez la page S.V.P.

G6. Écrire une fonction Produit(sx,sy) qui renvoie le produit des deux listes sx et sy
passées en argument. Les deux listes seront supposées être de même longueur.

G7. Écrire une fonction Moyenne(L) qui renvoie la valeur moyenne des éléments de la
liste L passée en argument.

22
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 NE RIEN ÉCRIRE DANS CE CADRE

C7. Quel intérêt présente l’harmonique de rang 2 par rapport aux autres harmoniques
pour déterminer la valeur du champ magnétique extérieur ? Comment mesurer
l’amplitude de l’harmonique 2 ?

D / Étude d’un filtre passe-bande

D1. Pour quelle raison la chaîne de mesure de la figure 8 comporte-t-elle un filtre
passe-bande ?

8

G4. Écrire une fonction Choix_point() qui renvoie les coordonnées x, y et z d’un point
choisi au hasard dans le parallélépipède rectangle de volume minimal contenant le
tore.

G5. Implémenter le calcul de l’intégrale α et de l’erreur relative associée par la méthode
Monte Carlo décrite ci-dessus.

21 Tournez la page S.V.P.
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 NE RIEN ÉCRIRE DANS CE CADRE

D2. Montrer que la fonction de transfert du filtre s’écrit :

H = A

1 + jQ
(

ω
ω0

− ω0
ω

) (4)

Déterminer les expressions de ω0, A et Q en fonction de R, L et C.

D3. Montrer que le gain est maximal pour une valeur particulière de la pulsation ω.
Donner l’expression du gain maximal.

9 Tournez la page S.V.P.

G / Quelques aspects algorithmiques associés au traitement des données

G1. Écrire une fonction f(x,y,z) recevant pour paramètres les coordonnées x, y et z
d’un point M et qui renvoie la valeur cos2 θ

r2 .
On pourra noter que cos2θ

r2 = x2

(x2+y2)2 .

G2. Écrire une fonction Choisir(a,b) qui renvoie une valeur choisie aléatoirement de
manière uniforme entre les bornes a et b passées en argument.

G3. Écrire une fonction Est_dans_tore(x,y,z) recevant pour paramètres les coordon-
nées x, y et z et qui renvoie True si le point M est dans le tore et False sinon. Les
rayons R et a caractérisant le tore seront supposés être des variables globales.

20
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 NE RIEN ÉCRIRE DANS CE CADRE

D4. Donner l’allure du gain H = |H| en fonction de la pulsation ω.

D5. Qu’appelle-t-on bande passante à -3 dB du filtre ? Rappeler et commenter l’expres-
sion de la largueur de la bande passante ∆ω en fonction de Q et ω0.

D6. Compte-tenu des caractéristiques du signal e(t) arrivant sur la chaîne de mesure de
la figure 8, comment choisir la valeur de la pulsation ω0 du filtre ?

10

F9. En l’absence d’excitation magnétique extérieure, que vaut la tension induite aux
bornes du bobinage de mesure ? Quel avantage présente le magnétomètre à noyau
torique par rapport au magnétomètre à barreau rectiligne ?

F10. Indiquer comment mesurer simultanément l’intensité du champ magnétique dans
deux directions orthogonales avec un seul magnétomètre à noyau torique.

19 Tournez la page S.V.P.
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 NE RIEN ÉCRIRE DANS CE CADRE

E / Détection synchrone et circuit intégrateur

E1. Déterminer l’expression du signal de sortie s2(t) du multiplieur en fonction de b(t),
K, A, B, ωe et ϕ. Montrer que le signal s2(t) possède une composante continue
1
2KAB cos(ϕ).

E2. Représenter le montage correspondant. Donner l’expression de la fonction de
transfert en fonction de la pulsation de coupure du filtre. On donnera l’expression
de la pulsation de coupure ωc en fonction de R et C.

11 Tournez la page S.V.P.

F8. Montrer que la force électromotrice e(t) qui apparaît aux bornes de la bobine de
mesure s’écrit :

e(t) = 3 α b
N2N2

1 I2
m

8π2
H0

R + a
ω sin(2ωt) (7)

où α =
∫∫∫

V

cos2 θ

r2 dV et V est le volume du noyau torique.

18
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 NE RIEN ÉCRIRE DANS CE CADRE

E3. Indiquer comment choisir la valeur de la pulsation ωc de ce filtre passe-bas.
Proposer un couple de valeurs pour R et C satisfaisant la contrainte précédente
avec fe = 1, 0 kHz.

E4. Expliquer en quoi l’utilisation d’un circuit intégrateur permet d’effectuer la com-
pensation mentionnée dans le préambule de la page 7.

E5. Rappeler les caractéristiques d’un amplificateur linéaire intégré (ALI) idéal. Re-
présenter l’évolution de la tension de sortie en fonction de la tension différentielle
d’entrée et identifier sur le graphique les différents régimes de fonctionnement de
l’ALI.

12

F6. Montrer à l’aide du résultat de la question C6 que la force électromotrice espire(y, t)
qui apparaît aux bornes de la spire d’abscisse y de la bobine de mesure a pour
expression :

espire(y, t) = 6bH0ω sin(2ωt)
∫∫

S(y,x>0)

H2
m(x, y, z) cos2(θ(x, y))dxdz (6)

où S(x > 0, y) est la section du tore définie précédemment.

F7. Déterminer l’expression du nombre de spires dN de la bobine situées entre y et
y + dy. À l’aide de la question F6, en déduire l’expression de la force électromotrice
de induite aux bornes de ces dN spires.

17 Tournez la page S.V.P.
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 NE RIEN ÉCRIRE DANS CE CADRE

E6. Quelle grandeur sur la figure 8 permet de déterminer la valeur du champ magnétique
extérieur (constant) dans lequel est plongé le magnétomètre ?

E7. Indiquer comment réaliser le montage de la figure 11. On précisera en particulier
les appareils à utiliser et comment les connecter pour, notamment, visualiser les
tensions périodiques e(t) et s(t).

13 Tournez la page S.V.P.

F4. Montrer que, en un point M du tore repéré par ses coordonnées cylindriques (r, θ, z)
(voir figure 14), la composante du champ magnétique suivant la direction (Oy),
s’écrit :

By(M, t) = f(H1(M, t) · cos θ + H0)
où f est donnée à nouveau par l’équation (1) (page 6) et modélise le comportement
du noyau ferromagnétique et H1(M, t) est la valeur de l’intensité de l’excitation
magnétique définie à la question F2.

F5. Indiquer en reproduisant le schéma de la figure 14 où se situe la surface S(x > 0, y)
pour le cas 0 < y < R − a et le cas R − a < y < R + a.

16
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 NE RIEN ÉCRIRE DANS CE CADRE

E8. Déterminer l’équation différentielle reliant les tensions e(t) et s(t). On fera intervenir
l’expression de la constante de temps τ du circuit.

F / Magnétomètre torique

F1. Quelles sont les propriétés de symétrie de cette distribution de courant ? En déduire
l’allure des lignes de champ et l’orientation du vecteur H⃗1.

14

F2. Montrer que pour un point M situé à l’intérieur de la bobine torique, à une distance
r de l’axe (Oz) de la bobine, l’expression du vecteur H⃗1(M) s’écrit sous la forme :
H⃗1(M, t) = H1(M, t)u⃗(M) avec H1(M, t) = Hm sin(ωt).
On précisera les expressions de Hm et u⃗(M).

F3. Pour amener le cœur ferromagnétique à saturation, il faut typiquement (selon
la nature du matériau) une excitation magnétique minimale Hmin de l’ordre
de 103A · m−1. Déterminer l’amplitude minimale du courant pour que le cœur
ferromagnétique soit entièrement à saturation. On prendra pour l’application
numérique les valeurs suivantes : R = 10 cm, a = 2,0 cm et N1 = 1000 spires.

15 Tournez la page S.V.P.
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 NE RIEN ÉCRIRE DANS CE CADRE

E6. Quelle grandeur sur la figure 8 permet de déterminer la valeur du champ magnétique
extérieur (constant) dans lequel est plongé le magnétomètre ?

E7. Indiquer comment réaliser le montage de la figure 11. On précisera en particulier
les appareils à utiliser et comment les connecter pour, notamment, visualiser les
tensions périodiques e(t) et s(t).

13 Tournez la page S.V.P.

F4. Montrer que, en un point M du tore repéré par ses coordonnées cylindriques (r, θ, z)
(voir figure 14), la composante du champ magnétique suivant la direction (Oy),
s’écrit :

By(M, t) = f(H1(M, t) · cos θ + H0)
où f est donnée à nouveau par l’équation (1) (page 6) et modélise le comportement
du noyau ferromagnétique et H1(M, t) est la valeur de l’intensité de l’excitation
magnétique définie à la question F2.

F5. Indiquer en reproduisant le schéma de la figure 14 où se situe la surface S(x > 0, y)
pour le cas 0 < y < R − a et le cas R − a < y < R + a.
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 NE RIEN ÉCRIRE DANS CE CADRE

E3. Indiquer comment choisir la valeur de la pulsation ωc de ce filtre passe-bas.
Proposer un couple de valeurs pour R et C satisfaisant la contrainte précédente
avec fe = 1, 0 kHz.

E4. Expliquer en quoi l’utilisation d’un circuit intégrateur permet d’effectuer la com-
pensation mentionnée dans le préambule de la page 7.

E5. Rappeler les caractéristiques d’un amplificateur linéaire intégré (ALI) idéal. Re-
présenter l’évolution de la tension de sortie en fonction de la tension différentielle
d’entrée et identifier sur le graphique les différents régimes de fonctionnement de
l’ALI.

12

F6. Montrer à l’aide du résultat de la question C6 que la force électromotrice espire(y, t)
qui apparaît aux bornes de la spire d’abscisse y de la bobine de mesure a pour
expression :

espire(y, t) = 6bH0ω sin(2ωt)
∫∫

S(y,x>0)

H2
m(x, y, z) cos2(θ(x, y))dxdz (6)

où S(x > 0, y) est la section du tore définie précédemment.

F7. Déterminer l’expression du nombre de spires dN de la bobine situées entre y et
y + dy. À l’aide de la question F6, en déduire l’expression de la force électromotrice
de induite aux bornes de ces dN spires.
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 NE RIEN ÉCRIRE DANS CE CADRE

E / Détection synchrone et circuit intégrateur

E1. Déterminer l’expression du signal de sortie s2(t) du multiplieur en fonction de b(t),
K, A, B, ωe et ϕ. Montrer que le signal s2(t) possède une composante continue
1
2KAB cos(ϕ).

E2. Représenter le montage correspondant. Donner l’expression de la fonction de
transfert en fonction de la pulsation de coupure du filtre. On donnera l’expression
de la pulsation de coupure ωc en fonction de R et C.

11 Tournez la page S.V.P.

F8. Montrer que la force électromotrice e(t) qui apparaît aux bornes de la bobine de
mesure s’écrit :

e(t) = 3 α b
N2N2

1 I2
m

8π2
H0

R + a
ω sin(2ωt) (7)

où α =
∫∫∫

V

cos2 θ

r2 dV et V est le volume du noyau torique.

18
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 NE RIEN ÉCRIRE DANS CE CADRE

D4. Donner l’allure du gain H = |H| en fonction de la pulsation ω.

D5. Qu’appelle-t-on bande passante à -3 dB du filtre ? Rappeler et commenter l’expres-
sion de la largueur de la bande passante ∆ω en fonction de Q et ω0.

D6. Compte-tenu des caractéristiques du signal e(t) arrivant sur la chaîne de mesure de
la figure 8, comment choisir la valeur de la pulsation ω0 du filtre ?

10

F9. En l’absence d’excitation magnétique extérieure, que vaut la tension induite aux
bornes du bobinage de mesure ? Quel avantage présente le magnétomètre à noyau
torique par rapport au magnétomètre à barreau rectiligne ?

F10. Indiquer comment mesurer simultanément l’intensité du champ magnétique dans
deux directions orthogonales avec un seul magnétomètre à noyau torique.
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D2. Montrer que la fonction de transfert du filtre s’écrit :

H = A

1 + jQ
(

ω
ω0

− ω0
ω

) (4)

Déterminer les expressions de ω0, A et Q en fonction de R, L et C.

D3. Montrer que le gain est maximal pour une valeur particulière de la pulsation ω.
Donner l’expression du gain maximal.

9 Tournez la page S.V.P.

G / Quelques aspects algorithmiques associés au traitement des données

G1. Écrire une fonction f(x,y,z) recevant pour paramètres les coordonnées x, y et z
d’un point M et qui renvoie la valeur cos2 θ

r2 .
On pourra noter que cos2θ

r2 = x2

(x2+y2)2 .

G2. Écrire une fonction Choisir(a,b) qui renvoie une valeur choisie aléatoirement de
manière uniforme entre les bornes a et b passées en argument.

G3. Écrire une fonction Est_dans_tore(x,y,z) recevant pour paramètres les coordon-
nées x, y et z et qui renvoie True si le point M est dans le tore et False sinon. Les
rayons R et a caractérisant le tore seront supposés être des variables globales.
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C7. Quel intérêt présente l’harmonique de rang 2 par rapport aux autres harmoniques
pour déterminer la valeur du champ magnétique extérieur ? Comment mesurer
l’amplitude de l’harmonique 2 ?

D / Étude d’un filtre passe-bande

D1. Pour quelle raison la chaîne de mesure de la figure 8 comporte-t-elle un filtre
passe-bande ?

8

G4. Écrire une fonction Choix_point() qui renvoie les coordonnées x, y et z d’un point
choisi au hasard dans le parallélépipède rectangle de volume minimal contenant le
tore.

G5. Implémenter le calcul de l’intégrale α et de l’erreur relative associée par la méthode
Monte Carlo décrite ci-dessus.
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C5. Quelles sont les composantes présentes dans le spectre de dB
dt ? Comment expliquer

la différence avec le spectre obtenu en l’absence de champ extérieur ?

C6. Montrer que dB
dt s’écrit sous la forme :

dB

dt
= K1 cos(ωt) + K2 sin(2ωt) + K3 cos(3ωt) (3)

avec
• K2 = −3bH0H2

mω
• K1 et K3 étant notamment des fonctions impaires de Hm.

On donnera les expressions de K1 et K3.
On pourra utiliser le formulaire de trigonométrie fourni en annexe.

7 Tournez la page S.V.P.

G6. Écrire une fonction Produit(sx,sy) qui renvoie le produit des deux listes sx et sy
passées en argument. Les deux listes seront supposées être de même longueur.

G7. Écrire une fonction Moyenne(L) qui renvoie la valeur moyenne des éléments de la
liste L passée en argument.
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C2. D’après le graphique 6.c, quelle est la fréquence du fondamental de la tension e(t) aux
bornes de la bobine de mesure ? Quelle constatation faire au sujet des harmoniques ?

C3. Quelle est l’expression de l’excitation magnétique H⃗0 associée à la présence du
champ extérieur B⃗0 = B0u⃗z ? En déduire l’expression de l’excitation totale H⃗ à
l’intérieur du cylindre ferromagnétique en fonction de B0, n, µ0 et i(t).

C4. D’après la figure 7.a, quelle est l’influence sur B(t) de la présence d’un champ
magnétique extérieur constant aligné avec le barreau ferromagnétique du magné-
tomètre ? On expliquera en particulier les différences entre les courbes B(t) des
figures 6.a et 7.a.

6

G8. Proposer une fonction Valeur_max(L) qui renvoie la valeur maximale de la liste L
passée en argument.

G9. On souhaite que les listes sx et sy soient de moyenne nulle, ce qui n’est pas a
priori le cas. Écrire une fonction Moyenne_nulle(L) qui modifie la liste L passée en
argument de façon à ce que sa moyenne soit nulle.
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B5. Rappeler la loi de Lenz-Faraday. Quel phénomène physique traduit-elle ?

B6. En déduire l’expression de la tension e(t) aux bornes de la bobine de mesure en fonc-
tion de Ns, S et B. Discuter de la valeur de e(t) selon que le noyau ferromagnétique
est saturé ou non.

C / Influence du champ magnétique extérieur

C1. Comment se manifeste sur la figure 6.a la saturation du barreau ferromagnétique
du magnétomètre ?
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G10. On choisit de calculer la fonction d’inter-corrélation pour M = ℓ. Écrire la
fonction Intercorr(sx,sy) qui renvoie la liste contenant les valeurs de la fonction
d’inter-corrélation C(n) pour n compris entre 0 et ℓ − 1.

G11. Quelle est la longueur de la liste renvoyée par la fonction Intercorr(sx,sy) ?
Quelle est la complexité temporelle associée à l’exécution de cette fonction dans les
conditions précisées ici ?
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